

Draka Comteg | Cable Solutions - EMEA

You will find our whole product range, detailed product information and data sheets on the following website: www.drakact.com

You are looking for a special cable type, sheath colour or sheath material – do not hesitate to contact us by e-mail at:

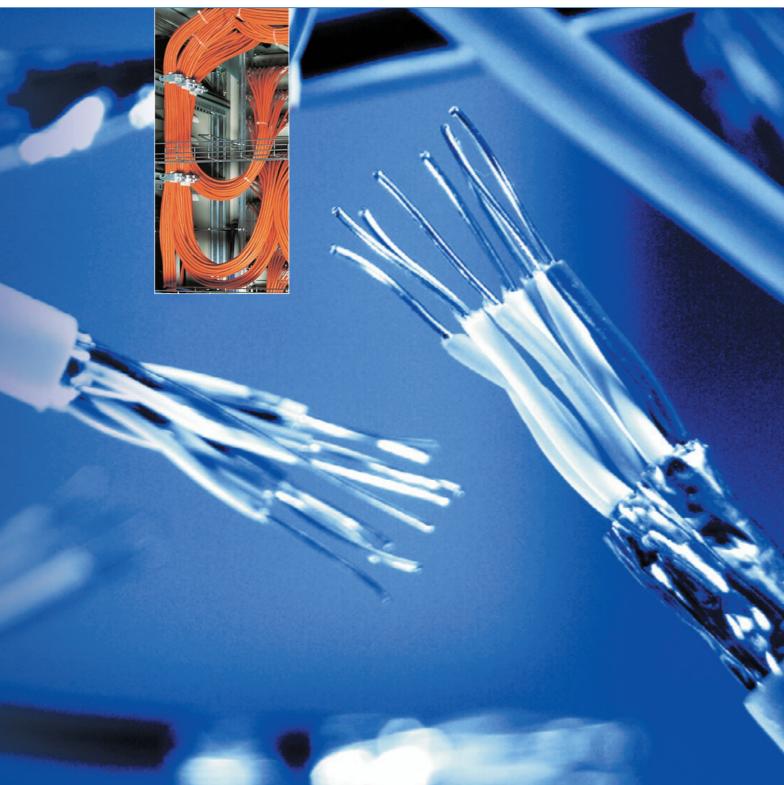
koeln.sales@draka.com

You would like to have our product catalogue on CD-Rom – please send us an e-mail at: koeln.marketing@draka.com

Draka Comteq – Cable in Copper and Optical Fibre Technology for:

- Office Communication
- Central Office Switching
- Home Networks
- Industry
- Studio
- CATV
- Long-distance networks
- Subscribers networks (FttX)
- Telecommunication networks
- Mobile telephone systems
- OPGW
- Signalling cables

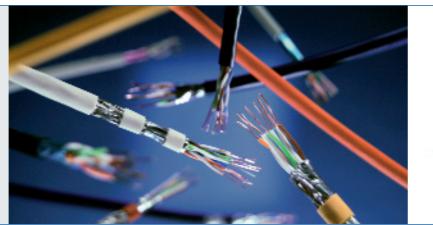
Norway Denmark United Kingdom The Netherlands Germany France Austria Spain


3.0/1006/CU-0

www.drakact.com

www.draka.com

Draka Comteg | Cable Solutions - EMEA



Data Cables UC300 | UC400 | UC500 | UC900 | UC1000 | UC1200 | UC1500

Cable concepts with future prospects

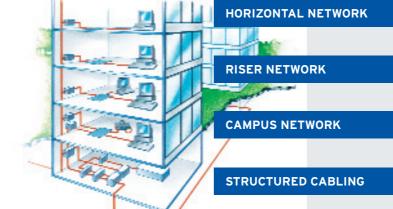
Draka Comteq - a member of Draka Holding N.V. located in Amsterdam - offers a versatile and reliable range of copper and optical fibre cables for the transmission in the data and telecommunication industry. Our long-lasting expertise in cable and fibre business has been the basis for us holding a major market position today. Draka Comteg is located in more than 30 countries in Europe, Asia, North America and South America.

Draka Comteg:

For many decades, we have been designing, developing, manufacturing and selling a variety of high-quality copper and optical fibre cables in order to offer you cable solutions for present and future challenges let it be standard products or tailor-made special cables.

In the communication infrastructure, our well proven products are always in use wherever it is a question of professional and undisturbed data, voice, audio and video transmission.

The range of Universal Cables as described in this brochure has been designed for data transmission and offers a highcapacity and flexible cable concept with best future prospects to our customers from within the industry, trade and service sector.


High speed

The demands on modern networks are very high. Speed and transmission reliability are of utmost priority. In this respect, Gigabit Ethernet offers an enormous potential for the future.

For many years, we have been a partner to companies from within the industry, trade and service sector. Thus we are well aware of our customers' needs.

Planning reliability is an important factor for you and for us, as today's cable concepts must also meet the requirements of tomorrow's developments. The Universal Cable range of Draka Comteg has the physical potential to support structured networking for future requirements.

Our product range (Cat.5e, Cat.6, Cat.7 and multimedia cables) has been adjusted to a variety of applications and allows highest transmission ratios. For high-end applications, our UC900 up to UC1500 series offer important reserve capacity. Our cable series have been designed to also allow cable sharing between all categories on the level of the lower category.

Flexibility

Our high-quality UC cables are always in use wherever it is a guestion of high-speed data transmission in local networks (LAN). They are used for standardized and manufacturer-independent networks - e.g. Token Ring, Ethernet, ISDN, TPDDI, Fast Ethernet 1000BaseT or 10GbE.

Aside from voice and data communication, our solutions are also applicable for video communication. Among others, our product range comprises installation and patch cables which have been tested as to their compatibility with common components. Thus, we can guarantee maximum transmission reliability.

Free choice

The right equipment for all applications: Whether high transmission capacity, electromagnetic compatibility (EMC) or best fire retardancy characteristics: We can offer the optimum data cable for every application. All our products are certainly manufactured at the highest quality standards. And it is no question that we will be pleased to advise you as to the installation. Short delivery times and best service guaranteed.

Types	
UC300	
UC400	
UC500	
UC900	
UC1000	
UC1200	
UC1500	

IEC
International Electrotechnical Commission ISO • International Standard Organisation EN • European Standard

Structured Solutions Performance EMC **Fire Protection** Universal Cable Multipair RoHS **Quality and Environment**

UC cables for different transmission frequencies:

Frequency MHz	EN 50173	ISO/IEC 11801 2 [™] ed.
100	Cat 5e Class D	Cat 5e Class D
250	Cat 6 Class E	Cat 6 Class E
500	Cat 6a Class Ea	Cat 6a Class Ea
600	Cat 7 Class F	Cat 7 Class F
1000	Cat 7a Class Fa	Cat 7a Class Fa
1200	Cat 7+	Cat 7+
1500	MULTIMEDIA	MULTIMEDIA

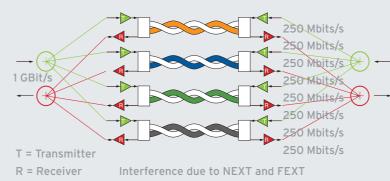
Cabling for future requirements

The data transmission according to Gigabit-Ethernet 1000BaseT is based on a "full-duplex principle" - i.e. via all cable pairs at the same time and parallel in both directions (bi-directional). This results in numerous closely tolerated transmission characteristics for cabling in future requirements. The most important characteristics for the future are: PS-NEXT, PS-ELFEXT and PS-ACR.

The major reason for interference in local networks is the NEXT (Near End Crosstalk). This effect is caused by mutual influence (coupling) of pairs next to each other.

The higher the transmission performance the stronger the interference. In modern network applications being based on a bidirectional data transmission, the interference increases. Power Sum (PS) values can be calculated for all relevant characteristics. In times of high data rates they allow indications of the performance and transmission capabilities of a data cable.

For example, a high PS-NEXT is important for users. Due to the core stranding and the patented foil screening, the high-end cables of our UC1500 series reach values being nearly 30 dB better than required by the CAT 7 standard. These resources are also for your benefit.


Standards

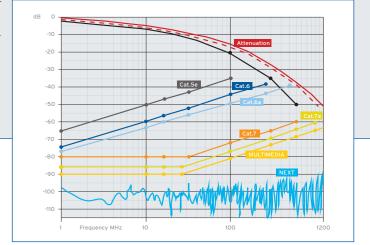
The received signal is decisive for all highspeed networks. Here, the FEXT (Far End Crosstalk) measures the crosstalk at the receiver. Due to the cable attenuation, the FEXT is substantially lower than the NEXT.

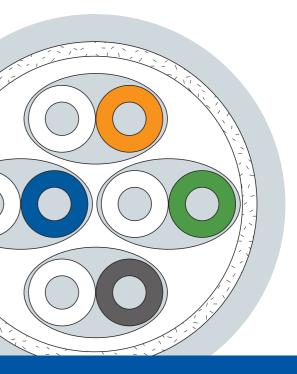
The more meaningful characteristics ELFEXT (Equal Level Far End Crosstalk) for the transmission performance can be obtained by deducting the insertion loss from the FEXT value. The resultant Power-Sum then is PS-ELFEXT.

Undisturbed signals

The chart shows the inference caused by NEXT and FEXT under realistic conditions and with full utilisation of Gigabit Ethernet. A transfer of information is only possible when the encoded data can be recognised, i.e. the attenuated signal at the receiver must be considerably stronger than the constant interference signal NEXT. Only the application of data cables with optimum channel separation protects against unintended inference and thus represents the condition for the full utilisation of the advantages of modern network application.

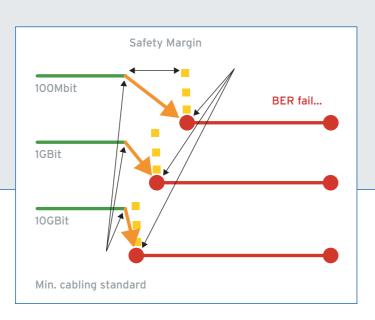
Relevant characteristics


The central characteristics of a passive network is the ACR (Attenuation Crosstalk Ratio). The ACR shows the attenuation ratio in proportion to the crosstalk ratio. The quality of the transmission is determined by the signal-to-noise ratio (sum of all interferences). Thus, the PS-ACR (cable signal-to-noise ratio) is the relevant characteristics for the assessment of the transmission capacity.


Minimum ACR

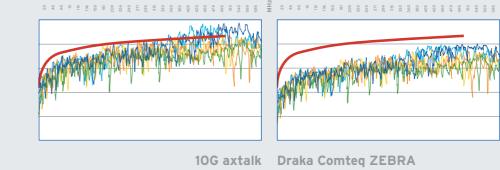
A minimum ACR of 10 dB is required for highest signal frequencies. The higher the frequency the lower the ACR. Example: For our data cable UC1500, the measurement result shows that the near-endcrosstalk attenuation is on such a low level that it can hardly be traced.

ACR= Attenuation Crosstalk RatioNEXT= Near End CrosstalkFEXT= Far End CrosstalkELFEXT= Equal Level Far End CrosstalkPS= PowerSum



10 GBASE-T Performance

10Giga bit Ethernet is simply the next protocol above 1000BaseT and is 10 times faster, 10 times more bandwidth, higher performance. Using the same full duplex systems copper cabling delivers bi-directional transmission rates at 250MHz per pair. Transmission Parameters already laid out by 1000BaseT are enough for the increase with only one extra test required, Exogeneous (alien) Xtalk (electrical noise).


Error detection

Ethernet works because of Error Detection Systems. The receiving end will poll until transmission is correct. If a system is noisy the error detection will retransmit the same information many times, slowing every transmission: there is a point at which the system will fail. 10G has the smallest safety (fail) margin. The components have to be good.

Margin

In standardisation the margin is built in to ensure plug and play works first time. 100m of cabling is guaranteed to work using components that are manufactured to the standard. The margin is steadily becoming smaller, 10G is almost nonexistent, as the error detection systems cannot work above a certain noise level. As bandwidth increases so does noise, no matter how good components are. The min. cabling standard is the lowest minimum possible, the TIA being the lowest, and can always be improved which is Draka's intention.

Exogenous (Alien) Xtalk

Alien Xtalk is the disturbance (noise) coupled onto a transmitting signal pair from all the other transmitting pairs (all other systems plus 10G). Space between the pairs possible to decrease signal interference, does decrease the level of noise, and can be seen in the graph, that a U/UTP with help (distance increased) nearly passes the test.

Screening

Methods to increase margin can involve screening. The exogenous Xtalk coupling devices can be fully deterred by earthing the mutual signal path. Patented foil systems already used by Draka deliver exactly the ultimate level of screening required. In this situation, and as written in the standards, the test for exogenous xtalk is unnecessary for screened cables with good screening attenuation performance.

UTP

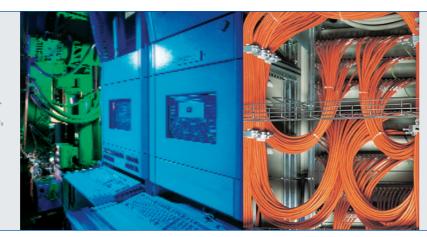

Space was mentioned earlier as a method of lessening effects from coupling signals. Using imaginative shaped jacket's are however the interference is still being allowed. Decreasing the expected signal interference might be successful in the lab but what of the real situation of installed cable with limited safety margin?

The patent Draka Technology: ZEBRA-Zero Earth-loop By **Reflectorfoil Application**

We understand how screening functions and lead in this market area. The world market is however U/UTP. With our ZEBRA technology Draka combines for the first time advantages of screened protection in an unscreened cable.

- protected by closely placed foil segments
- short foil segments avoid antenna effect
- avoidence of loop currents by seqmentation isolation

Structured Solutions Performance EMC **Fire Protection** Universal Cable Multipair RoHS **Quality and Environment**

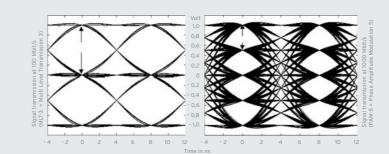

This combination keeps the cable comparably small and easy to install - just like a U/UTP should be.

Perfection and Quality

Only a cable ensuring optimum ratios with all characteristics can offer the full performance spectrum. Our multimedia cables go through a constant manufacturing process with extremely close tolerances. With development and production, our emphasis lies on high-quality materials and the state-of-the-art manufacturing processes. Thus we are able to guarantee excellent performance and reliability.

Patented solutions

A compact and solid cable construction guarantees low attenuation and minimum reflections for the whole frequency range. Due to the high requirements on attenuation, crosstalk and consistency of the impedance, we only use stranded wires or larger copper conductors for the production of our UC cables.


For Cable-Sharing, i.e. several applications on one cable, the pair and overall screening is the best cable construction. With its aluminium-laminated plastic foil and patented foil screening, our cables of series UC400, UC500 and UC1500 guarantee an optimum pair screening.

With conductor diameters of 0.56 mm (AWG23) and 0.64 (AWG22), foam-skin core insulations enable us to achieve lowest core diameters. We are of course certified according to ISO 9001, additionally we practise environmental management in line with ISO EN 14001.

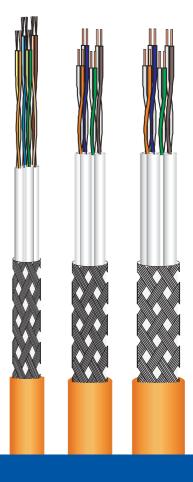
Return Loss

Modern network applications require highquality cables as manufactured here at Draka Comteg.

Slight deviations within the insulation material lead to irregularities on the transmission link and cause reflections. This 'return loss' arises when parts of the transmission signal at the deviation are returned to the transmitter due to reflection.

Propagation Delay and Delay Skew

Due to the increased requirements on Gigabit Ethernet the propagation delay and the delay skew become more important. The delay skew is the transmission time difference of two or more pairs.


With the twisted lengths designed by us, our UC data cables achieve a minimum propagation delay and delay skew of less than 12 ns/100m. Also with great application lengths, this means full capacity for high-speed applications with synchronous transmission over all 4 pairs.

Transmission reliability

Due to the high data rates, data transmission is increasingly subject to interferences. Low quality cables generate additional interferences and the risk of transmission failure increases. Despite high-speed applications, existing data rates and the network capacity are not fully used. Therefore, you can rely now on our highquality data cables with hardly any risk of interference. So - invest in the power of your network to meet future requirements.

Structured Solutions
Performance
EMC
Fire Protection
Universal Cable
Multipair
RoHS
Quality and Environment

Reliability and Noise Immunity

For many years, "electromagnetic compatibility" (EMC) has been a must for electric equipment. So far the main problem was external interferences influencing system's causing failure.

With high-quality cabling a new problem arises: the Alien Crosstalk (crosstalk of one cable's transmission on all pairs next to another cable's receiving signal path on a single pair).

Screening efficiency

EMC stands for the capability of a system to work without having a negative influence (emission of interference) on other systems.

With our Universal Cable series we offer a wide range of installation and connection cables with an optimum screening factor. This ensures the compliance with EMC regulations and the protection of your system.

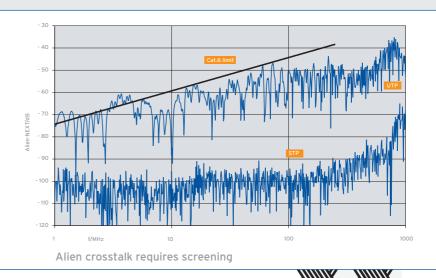
Noise Immunity

Our screened symmetric cables are known for their high noise immunity and low emission of interference – as shown by the standards EN 55022 Class B and EN 50082-1.

Moreover, leading manufacturers of LAN components certify that there is no emission of interference and a high network reliability with our Cat.5e to Cat.7 cables when applied at 100 Mbit/s.

Screening factors

The application of high-quality materials and the screening factor are decisive for an optimum screening.

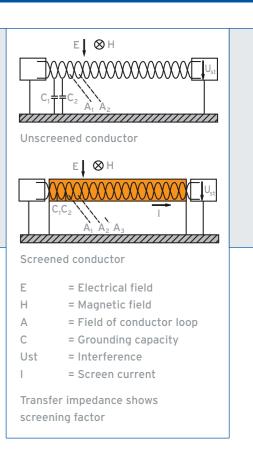

Complying with the respective EMC requirements, our screened UC cables are available in the following quality options:

S (Screen):

Overall screen of aluminium-laminated foil

- HS (High Screen): Highly screened with aluminiumlaminated foil and tinned copper braid
- SS (Super Screen): Pair screen with aluminium-laminated foil and overall screen with tinned copper braid

The application of highly screened cables saves adjustments in case of further installations. This means for you a very cost effective cabling solution for now and the future.



Uninfluenced

More and more important in practice: The interference of reliable data transmission by mutual influence of unscreened and undefined communication cables. The degree of the mutual influence is called "Alien Crosstalk". Although this value is not recorded with link tests, it reduces the ACR like a normal NEXT.

At 100 MHz, the Alien Crosstalk of two unscreened Cat.6 cables laid in parallel amounts to 55 dB, whereas it reaches 95 dB with screened cables. This can be of relevance at the patch panel where a tight bundling of the cables is necessary. Structured Solutions Performance EMC Fire Protection Universal Cable Multipair RoHS Quality and Environment

Optimum transfer impedance

The transfer model of a screened (below) and unscreened (above) conductor clearly shows: In this case of an electromagnetic wave reaching the cable from outside leads to interference due to induction. With relatively low frequencies, this effect may be limited by symmetric transmission elements. With high frequencies, however, a screen is indispensable. It conducts the interfering current to the ground contact of the cabinet and thus protects the signal carrying conductor. The effect of the screen is measured as transfer impedance at the cable.

Prevention with future prospects

For many years, flame retardance has been among the minimum requirements of indoor cables. Some PVC cables were often used in the past - PVC is less flammable than other materials, but they do not prevent a spread of fire. They release toxic and corrosive gases when burnt. The alternative: High-quality LSZH (Low-Smoke-Zero-Helogen) materials with considerably improved properties in case of fire.

Protecting LSZH sheath

All UC cables are also available with halogenfree and flame retardant LSZH sheath. Excellent materials guarantee best electrical and mechanical properties of the cable.

The ability of our cables to avoid a spread of fire is documented by two standardized test methods: The fire characteristics of a single cable is determined according to IEC 60332-1. Test method C of IEC 60332-24 C tests the characteristics of cable bundles. These tests are performed under realistic conditions in the field of structured cabling in buildings, e.g. in the distribution room or void. All our UC cables with LSFRZH sheath fully comply with this significantly stricter standard (test method C).

It is dependent on the respective building or field of application whether to decide for a data transmission cable according to test method B or C. In case of any doubt, however, security ranks first and you should prefer the data cable with the flame retardant properties.

Improved fire protection characteristics

- No spread of (fire propagation), e.g. transmission of the local fire alongside the cables
- No emission of corrosive gases, possibly creating acid with extinguishing water
- Very low smoke development
- No Dioxin in the fire remains
- Considerably low toxicology of fire gases

The following test methods examine the above aspects and therewith enable the user to compare the quality options of

Test method C passed

UC data cables for an o

of fire gases

Measurement

of smoke density

- LSZH Low-Smoke-Zero-Helogen
- LSFRZH Low-Smoke-Flame-Retardant-Zero-Helogen
- Test method B Fire characteristics single cable
- Test method C Fire characteristics cable bundle

propane gas flame (up to 1 meter), however, the cable bundle extinguishes itself and the remaining cable length remains without damage: No fire propagation, no excessive smoke development which would, in case of emergency, obstruct changes to

A cable bundle is exposed to a 20kW flame

for 20 minutes in a 4 meter high cabinet.

The cables burn within the range of the

in case of emergency, obstruct chances to escape. For comparison: Under the same conditions, some PVC cables burn completely within 5 minutes over the entire length.

Safety

the cables.

Highest precautionary measures as to the cabling apply at crowded places (e.g. hospitals, airports, schools, department stores, hotels), in buildings with a high concentration of commodity values and wherever a breakdown would involve high expenses (e.g. industrial plants, power stations, EDP centres, banks) as well as in alarm, signal and control sytems. Structured Solutions
Performance
EMC
Fire Protection
Universal Cable
Multipair
RoHS
Quality and Environment

cs				UC-
	European standard	International standard	Data cable with PVC sheath	Data cable with LSFRZH sheath
eris- 1 of le	EN 50265	IEC 60332-1	•	•
	EN 50266	IEC 60332-3 Cat. C		•
	EN 50267	IEC 60754-2		
	EN 61034	IEC 61034-1		
ptimu	m fire protection			

Material of the future

Currently, the application of fluorinated polymers as insulation material is under discussion. It is known for its extremely high thermal stability and flame retardance. However, in case of emergency this material releases highly toxic and corrosive fire gases despite the considerably improved fire resistance compared to PVC. Also in future, only LSZH materials represent a responsible alternative.

Electrical prop	ertie	S								Mechanica	al propertie	S
Transmission _j	perfor	man	ce				EMC proper	ties				
UC300 26 Cat.!	5e U/L	JTP			Patch	Cable						
MHz	: 1	10	100	250	300		Impedance	Ω	100±5	Fire protecti	on characterist	ics****
Attenuation** dE	0.3	0.9	3.0	4.4	4.8		Loop resistand	ce Ω/	′km≤260	Overall dian	neter mm	5.2
NEXT dE	71.0	56.0	41.0	35.0	34.0		NVP***	%	ca. 67	Weight	kg/km	25
PS-NEXT dE	68.0	53.0	38.0	32.0	31.0		Capacitance	nF/km	nom. 48	Fire load	MJ/km	324
PS-ELFEXT dE	65.0	45.0	25.0	17.0	13.0					Bending rad	ius	
											with load	8xD
											without load	4xD
										Tensile force	e N	100

Transmission p	erfor	mano	ce					EMC properties
UC400 24 Cat.6	5 U/U [.]	TP			Patch	n Cabl	e	
MHz	1	10	100	250	300	400		Impedance Ω 100±5
Attenuation** dB	0.24	0.84	0.29	0.47	0.53	0.63		Loop resistance $\Omega/km \le 198$
NEXT dB	80.0	74.0	58.0	47.0	42.0	40.0		NVP*** % ca. 70
PS-NEXT dB	77.0	71.0	55.0	44.0	39.0	37.0		Capacitance nF/km nom. 50
PS-ELFEXT dB	63.0	49.0	29.0	23.0	17.0	13.0		

Electrical properties

UC300 24 Cat.5	e U/L	JTP			Instal	lation Cable		
MHz	1	10	100	250	300		Impedance Ω 100±5 Fire protection characterist	ics***
Attenuation* dB	1.9	6.0	19.8	29.2	32.0		Loop resistance $\Omega/km \le 165$ Overall diameter mm	5.0
NEXT dB	71.0	56.0	41.0	35.0	34.0		NVP*** % ca. 67 Weight kg/km	35
PS-NEXT dB	68.0	53.0	38.0	32.0	31.0		Capacitance nF/km nom. 48 Fire load MJ/km	336
ACR dB	69.1	50.0	21.2	5.8	2.0		Bending radius	
PS-ACR dB	63.1	47.0	18.2	2.8	- 1.2		with load	8xD
PS-ELFEXT dB	65.0	45.0	25.0	17.0	13.0		without load	4xD
							Tensile force N	100

300 S24 (Cat.	.5e F/	UTP			Insta	llation Cable	_						
1	ИНz	1	10	100	250	300] [Impedance	Ω	100±5	Fire protection of	haracterist:	ic
Attenuation*	dB	1.9	6.0	19.8	29.2	32.0		1 [Loop resistanc	e Ω/	′km ≤190	Overall diamete	er mm	
NEXT	dB	71.0	56.0	41.0	35.0	34.0		1 [NVP***	%	ca. 67	Weight	kg/km	
PS-NEXT	dB	68.0	53.0	38.0	32.0	31.0		1 [Capacitance	nF/km	nom. 48	Fire load	MJ/km	
ACR	dB	69.1	50.0	21.2	5.8	1.8		1 [Transfer impe	dance	mΩ/m	Bending radius		
PS-ACR	dB	66.1	47.0	18.2	2.8	-1.2		1	ć	at 1 MHz	20		with load	
PS-ELFEXT	dB	65.0	45.0	25.0	17.0	13.0		1	at	:10 MHz	30	wit	hout load	
									at	30 MHz	40	Tensile force	Ν	
									at 1	00 MHz	200			

UC300 HS24 Ca	t.5e	SF/U	TP		Instal	lation Cable			88				
MHz	1	10	100	250	300			Impedance	Ω	100±5	Fire protection c	haracterist	ics****
Attenuation* dB	1.9	6.0	19.8	29.2	32.0			Loop resistanc	e Ω	/km ≤190	Overall diamete	r mm	6.4
NEXT dB	71.0	56.0	41.0	35.0	34.0			NVP***	%	ca. 67	Weight	kg/km	47
PS-NEXT dB	68.0	53.0	38.0	32.0	31.0			Capacitance	nF/km	nom. 48	Fire load	MJ/km	433
ACR dB	69.1	50.0	21.2	5.8	2.0			Transfer imped	dance	mΩ/m	Bending radius		
PS-ACR dB	66.1	47.0	18.2	2.8	-1.0			ĉ	at 1 MHz	20		with load	8xD
PS-ELFEXT dB	65.0	45.0	25.0	17.0	13.0			at	10 MHz	30	with	nout load	4xD
							_	at	30 MHz	40	Tensile force	Ν	120
								at 1	00 MHz	200			

Duplex	Cable available on request.	
--------	-----------------------------	--

UC400 S26 Cat.	6 U/F	TP			Patch	Cabl							
MHz	1	10	100	250	300	400	Im	pedance	Ω	100±5	Fire protection ch	aracteristi	CS****
Attenuation** dB	0.3	1.0	3.3	5.1	5.6	6.5	Lo	op resistanc	e Ω/	km≤250	Overall diameter	mm	6.0
NEXT dB	87.0	72.0	57.0	51.0	50.0	48.0	NV	VP***	%	ca. 75	Weight	kg/km	32
PS-NEXT dB	84.0	69.0	54.0	48.0	47.0	45.0	Ca	apacitance	nF/km	nom. 43	Fire load	MJ/km	268
PS-ELFEXT dB	72.0	72.0	52.0	44.0	42.0	40.0	Tra	ansfer imped	dance	mΩ/m	Bending radius		
								8	at 1 MHz	50	W	ith load	8xD
								at	10 MHz	100	with	out load	4xD
								at	30 MHz	200	Tensile force	Ν	100
								at 1	00 MHz	1000			

UC400 23 Cat.	5 U/U	TP			Insta	llatio	n Cable						
MH:	: 1	10	100	250	300	400		Impedance	Ω	100±5	Fire protection cha	aracterist	ics*
Attenuation* dB	1.9	5.6	19.0	32.0	36.0	42.0		Loop resistanc	e Ω/	(m ≤176	Overall diameter	mm	6
NEXT de	81.0	74.0	48.0	44.0	41.0	39.0		NVP***	%	ca. 68	Weight	kg/km	
PS-NEXT de	78.0	71.0	45.0	41.0	38.0	36.0		Capacitance	nF/km	nom. 48	Fire load	MJ/km	3
ACR de	79.0	68.0	29.0	12.0	5.0	-3.0					Bending radius		
PS-ACR dE	76.0	65.0	26.0	9.0	2.0	-6.0					W	ith load	8
PS-ELFEXT de	77.0	57.0	39.0	27.0	26.0	25.0					witho	out load	4
								_			Tensile force	Ν	1

UC400 S23								J					
	MHz	1	10	100	250	300	400	Impedance	Ω	100±5	Fire protection ch	aracterist	ics
Attenuation*	dB	2.0	5.7	19.0	31.0	35.0	43.0	Loop resistance	Ω/I	(m ≤145	Overall diameter	mm	
NEXT	dB	90.0	90.0	90.0	86.0	86.0	86.0	NVP***	%	ca. 75	Weight	kg/km	
PS-NEXT	dB	87.0	87.0	87.0	83.0	83.0	83.0	Capacitance nF/I	km	nom. 45	Fire load	MJ/km	Į,
ACR	dB	88.0	84.0	71.0	55.0	51.0	43.0	Transfer impedance	è	mΩ/m	Bending radius		
PS-ACR	dB	85.0	81.0	68.0	52.0	48.0	40.0	at 1 M	Ηz	50	V	ith load	3
PS-ELFEXT	dB	82.0	76.0	56.0	48.0	46.0	41.0	at 10 M	Ηz	100	with	out load	
								at 100 M	Ηz	200	Tensile force	Ν	

* Nominal value measured at 100 m ** Nominal value Patch Cable measured at 10 m *** NVP = Nominal Velocity of Propagation **** LSOH (Velocity of Propagation)

Structured Solutions
Performance
EMC
Fire Protection
Universal Cable
Multipair
RoHS
Quality and Environment

Mechanical properties

EMC properties

		
Fire protection ch	aracterist	ics****
Overall diameter	mm	5.0
Weight	kg/km	28
Fire load	MJ/km	287
Bending radius		
W	ith load	8xD
with	out load	4xD
Tensile force	Ν	100

Electrical prope	erties	S										Mechanica	l propertie	S		E	lectrical (pro
Transmission p	erfor	man	ce					EMC p	oroper	ties						T	Transmissi	ion
UC500 S26 Cat.	6a U/	/FTP			Patch	n Cabl	e]	ι	JC900 SS2	27 0
MHz	1	10	100	250	300	400	500	Impeda	ance	Ω	100±5	Fire protectio	n characterist	tics****		Γ		MH
Attenuation** dB	0.3	0.8	2.6	4.1	4.7	5.3	6.0	Loop re	esistanc	e Ω	/km≤250	Overall diam	eter mm	6.0			Attenuation [*]	** d
NEXT dB	87.0	72.0	57.0	51.0	50.0	48.0	48.0	NVP**	*	%	ca. 75	Weight	kg/km	32			NEXT	d
PS-NEXT dB	84.0	69.0	54.0	48.0	47.0	45.0	45.0	Capaci	tance	nF/km	nom. 43	Fire load	MJ/km	268			PS-NEXT	d
PS-ELFEXT dB	72.0	72.0	52.0	44.0	42.0	40.0	38.0	Transfe	er imped	dance	mΩ/m	Bending radi	us				PS-ELFEXT	d
									ĉ	at 1 MHz	50		with load	8xD		_		
									at	10 MHz	100		without load	4xD				
									at	30 MHz	200	Tensile force	N	100				
									at 1	00 MHz	1000							

UC500 23 C	at.6	a U/L	JTP			Insta	llatio	n Cab
	MHz	1	10	100	250	300	400	500
ttenuation*	dB	2.0	5.9	19.0	31.1	34.2	40.0	45.3
IEXT	dB	75.3	60.3	45.3	39.3	38.1	36.3	34.8
PS-NEXT	dB	72.3	57.3	42.3	36.3	35.1	33.3	31.8
ACR	dB	73.0	54.0	26.0	8.2	3.9	-3.7	-10.5
PS-ACR	dB	70.0	51.0	23.0	5.2	0.9	-6.7	-13.5
PS-ELFEXT	dB	65.0	45.0	25.0	17.0	15.5	13.0	11.0

UC500 S23 (Cat.	6a U/	FTP			Insta	llatio	n Cab	le			20-			
١	/Hz	1	10	100	250	300	400	500			Impedance Ω	100±5	Fire protection cha	aracterist	ics****
Attenuation*	dB	2.0	5.7	19.0	31.0	35.0	43.0	44.0			Loop resistance 🛛 🛛	/km ≤145	Overall diameter	mm	7.3
NEXT	dB	90.0	90.0	90.0	86.0	86.0	86.0	84.0			NVP*** %	ca. 75	Weight	kg/km	45
PS-NEXT	dB	87.0	87.0	87.0	83.0	83.0	83.0	81.0			Capacitance nF/km	nom. 45	Fire load	MJ/km	542
ACR	dB	88.0	84.0	71.0	55.0	51.0	43.0	40.0			Transfer impedance	mΩ/m	Bending radius		
PS-ACR	dB	85.0	81.0	68.0	52.0	48.0	40.0	37.0		1	at 1 MHz	≤50	W	ith load	8xD
PS-ELFEXT	dB	82.0	76.0	56.0	48.0	46.0	41.0	39.0			at 10 MHz	≤100	witho	out load	4xD
											at 100 MHz	≤200	Tensile force	Ν	100

JC500 AS23	3 Ca	t.6a	F/FTP			Insta	llatio	n Cab	le	
1	MHz	1	10	100	250	300	400	500		Impedance Ω 100±5 Fire protection characteristics*
Attenuation*	dB	1.8	5.4	17.4	28.1	30.9	38.3	44.8		Loop resistance Ω/km ≤176 Overall diameter mm €
NEXT	dB	100.0	100.0	100.0	90.0	89.0	87.0	85.0		NVP*** % ca. 79 Weight kg/km
PS-NEXT	dB	97.0	97.0	97.0	87.0	86.0	84.0	82.0		Capacitance nF/km nom. 43 Fire load MJ/km 5
ACR	dB	98.0	95.0	83.0	62.0	58.0	48.0	40.0		Transfer impedance mΩ/m Bending radius
PS-ACR	dB	95.0	92.0	80.0	59.0	55.0	52.0	49.0		at 1 MHz 20 with load 8
PS-ELFEXT	dB	30.0	30.0	30.0	24.0	24.0	23.0	22.0		at 10 MHz 50 without load 4
										at 30 MHz 100 Tensile force N 10
										at 30 MHz 100 Tensile force N

Electrical	properties
	proper ties

Transmission performance										EMC propertie	S				
UC900 SS2 [.]	7 Ca	t.7 S/	FTP			Patch	Cabl	e			888				
	MHz	1	10	100	250	300	450	600	900	Impedance	Ω	100±5	Fire protection ch	aracterist	ics****
Attenuation*	* dB	0.3	1.0	3.2	5.1	5.6	6.9	7.9	9.7	Loop resistance	Ω/	km≤340	Overall diameter	mm	5.9
NEXT	dB	90.0	90.0	87.0	81.0	80.0	77.0	75.0	72.0	NVP***	%	ca. 79	Weight	kg/km	39
PS-NEXT	dB	87.0	87.0	84.0	78.0	77.0	74.0	72.0	69.0	Capacitance nF	-/km	nom. 43	Fire load	MJ/km	349
PS-ELFEXT	dB	77.0	77.0	57.0	49.0	47.0	44.0	41.0	38.0	Transfer impedance	ce	mΩ/m	Bending radius		
										at 1 l	MHz	30	W	ith load	8xD
										at 10 I	MHz	30	with	out load	4xD
										at 30 I	MHz	50	Tensile force	Ν	100
										at 100 I	MHz	200			

	MHz	1	10	100	250	300	450	600	900	Impedance	Ω	100±5	Fire protection ch	aracterist	ics***
Attenuation*	dB	1.8	5.4	17.4	28.1	30.9	38.3	44.8	59.4	Loop resistance	e Ω/	km ≤165	Overall diameter	mm	7.0
NEXT	dB	100.0	100.0	100.0	90.0	89.0	87.0	85.0	82.0	NVP***	%	ca. 79	Weight	kg/km	6
PS-NEXT	dB	97.0	97.0	97.0	87.0	86.0	84.0	82.0	79.0	Capacitance	nF/km	nom. 43	Fire load	MJ/km	59
ACR	dB	98.0	95.0	83.0	62.0	58.0	48.0	40.0	23.0	Transfer imped	dance	mΩ/m	Bending radius		
PS-ACR	dB	95.0	92.0	80.0	59.0	55.0	45.0	37.0	20.0	а	at 1 MHz	20	W	ith load	8x
PS-ELFEXT	dB	105.0	94.0	74.0	66.0	64.0	61.0	58.0	55.0	at	10 MHz	30	with	out load	4х
										at 10	00 MHz	200	Tensile force	N	10

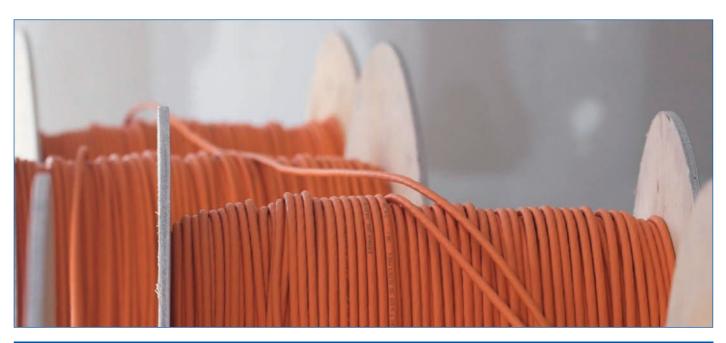
UC900 SS23 C	at.7 S,	/FTP			Insta	llatio	n Cabl	e	888	
MH	z 1	10	100	250	300	450	600	900	Impedance Ω 100±5 Fire protection characteristic	CS****
Attenuation* dB	3 1.8	5.4	17.4	28.1	30.9	38.3	44.8	59.4	Loop resistance Ω/km ≤150 Overall diameter mm	7.5
NEXT de	3 100.0	100.0	100.0	90.0	89.0	87.0	85.0	82.0	NVP*** % ca. 79 Weight kg/km	75
PS-NEXT de	97.0	97.0	97.0	87.0	86.0	84.0	82.0	79.0	Capacitance nF/km nom. 43 Fire load MJ/km	585
ACR dE	98.0	95.0	83.0	62.0	58.0	48.0	40.0	23.0	Transfer impedance mΩ/m Bending radius	
PS-ACR dE	95.0	92.0	80.0	59.0	55.0	45.0	37.0	20.0	at 1 MHz 5 with load	8xD
PS-ELFEXT de	3 105.0	94.0	74.0	66.0	64.0	61.0	58.0	55.0	at 10 MHz 5 without load	4xD
		-							at 100 MHz 20 Tensile force N	340

Structured Solutions
Performance
EMC
Fire Protection
Universal Cable
Multipair
RoHS
Quality and Environment

Mechanical properties

EMC 41

Electrical prop	erties	5							Mechanical properties	
Transmission p	erfor	man	ce						EMC properties	
UC1000 SS23 Cat.7a S/FTP Installation Cable									888 📚	
MHz	1	10	100	250	300	450	600	1000	Impedance Ω 100±5 Fire protection characteristics**	***
Attenuation* dB	2.0	5.5	17.9	28.6	31.4	36.5	44.8	58.0	Loop resistance $\Omega/km \le 132$ Overall diameter mm 7.	7.8
NEXT dB	100.0	100.0	95.0	93.0	93.0	90.0	88.0	85.0	NVP*** % ca. 79 Weight kg/km 7	75
PS-NEXT dB	97.0	97.0	92.0	90.0	90.0	87.0	85.0	82.0	Capacitance nF/km nom. 44 Fire load MJ/km 58	85
ACR dB	98.0	94.5	77.1	64.4	61.6	53.5	43.2	27.0	Transfer impedance mΩ/m Bending radius	
PS-ACR dB	95.0	91.5	74.1	61.4	58.6	50.5	40.2	24.0	at 1 MHz 5 with load 8x	хD
PS-ELFEXT dB	82.0	76.0	56.0	48.0	46.0	40.0	39.0	33.0	at 10 MHz 5 without load 4x	хD
									at 100 MHz 20 Tensile force N 34	40

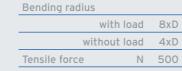

C1200 HS22 Cat.7+ S/FTP Installation Cable										
١	/Hz	1	10	100	250	450	600	1000	1200	Impedance Ω 100±5 Fire protection characteristics*
Attenuation*	dB	1.7	5.1	16.3	25.8	34.7	40.2	52.1	57.1	Loop resistance Ω/km ≤130 Overall diameter mm 8
NEXT	dB	117.0	102.0	87.0	81.0	78.0	76.0	72.0	71.0	NVP*** % ca. 79 Weight kg/km
PS-NEXT	dB	114.0	99.0	84.0	78.0	75.0	73.0	69.0	68.0	Capacitance nF/km nom. 43 Fire load MJ/km 68
ACR	dB	116.0	97.0	71.0	56.0	43.0	36.0	20.0	14.0	Transfer impedance mΩ/m Bending radius
PS-ACR	dB	113.0	94.0	68.0	53.0	40.0	33.0	17.0	11.0	at 1 MHz 20 with load 83
PS-ELFEXT	dB	103.0	83.0	63.0	55.0	50.0	47.0	43.0	41.0	at 10 MHz 30 without load 4
										at 100 MHz 200 Tensile force N 15

UC1500 SS2	3 M	ULTIN	MEDIA	A 6foi	ls S/F	тр				888
I	MHz	1	10	100	250	450	600	1000	1500	Impedance Ω 100±5 Fire protection characteristics**
Attenuation*	dB	2.0	5.7	18.5	30.1	42.6	49.0	63.3	77.5	Loop resistance Ω/km ≤135 Overall diameter mm 7.
NEXT	dB	117.0	117.0	102.0	96.0	93.0	93.0	87.0	85.0	NVP*** % ca. 80 Weight kg/km 8
PS-NEXT	dB	114.0	114.0	99.0	93.0	90.0	90.0	84.0	82.0	Capacitance nF/km nom. 43 Fire load MJ/km 64
ACR	dB	115.0	112.0	84.0	66.0	50.0	50.0	24.0	7.3	Transfer impedance mΩ/m Bending radius
PS-ACR	dB	112.0	109.0	81.0	63.0	47.0	47.0	21.0	4.3	at 1 MHz 5 with load 8x
PS-ELFEXT	dB	103.0	83.0	63.0	55.0	50.0	50.0	43.0	39.0	at 10 MHz 5 without load 4x
										at 100 MHz 15 Tensile force N 34

UC1500 SS2	2 M	ULTIN	MEDI	A 6foi	ls S/I	ТР					
Ν	/Hz	1	10	100	250	450	600	1000	1500	Impedance Ω 100±5 Fire protection characterist	ics****
Attenuation*	dB	1.7	5.1	16.3	25.8	28.3	40.2	52.1	64.1	Loop resistance $\Omega/km \le 110$ Overall diameter mm	8.9
NEXT	dB	115.0	115.0	111.0	105.0	104.0	100.0	96.0	94.0	NVP*** % ca. 79 Weight kg/km	95
PS-NEXT	dB	112.0	112.0	108.0	102.0	101.0	97.0	93.0	91.0	Capacitance nF/km nom. 43 Fire load MJ/km	746
ACR	dB	113.0	110.0	95.0	80.0	76.0	60.0	44.0	30.0	Transfer impedance mΩ/m Bending radius	
PS-ACR	dB	110.0	107.0	92.0	77.0	73.0	57.0	41.0	27.0	at 1 MHz 5 with load	8xD
PS-ELFEXT	dB	102.0	94.0	74.0	66.0	64.0	58.0	54.0	50.0	at 10 MHz 5 without load	4xD
										at 100 MHz 10 Tensile force N	380

* Nominal value measured at 100 m ** Nominal value Patch Cable measured at 10 m *** NVP = Nominal Velocity of Propagation **** LSOH (Velocity of Propagation)

Product scope UC Data Transmission Cable


Cable type	Screening	Category	Application
UC300 24	U/UTP	Cat.5e	Installation Cable
UC300 S24	F/UTP	Cat.5e	Installation Cable
UC300 HS24	SF/UTP	Cat.5e	Installation Cable
UC300 26	U/UTP	Cat.5e	Patch Cable
UC300 S26	F/UTP	Cat.5e	Patch Cable
UC300 HS26	SF/UTP	Cat.5e	Patch Cable
UC400 23	U/UTP	Cat.6	Installation Cable
UC400 S23	F/UTP	Cat.6	Installation Cable
UC400 S23	U/FTP	Cat.6	Installation Cable
UC400 HS23	S/FTP	Cat.6	Installation Cable
UC400 24	U/UTP	Cat.6	Patch Cable
UC400 S26	U/FTP	Cat.6	Patch Cable
UC500 23	U/UTP	Cat.6a	Installation Cable
UC500 S23	U/FTP	Cat.6a	Installation Cable
UC500 AS23	F/FTP	Cat.6a	Installation Cable
UC500 27	U/UTP	Cat.6a	Patch Cable
UC500 S26	U/FTP	Cat.6a	Patch Cable
UC900 HS23	S/FTP	Cat.7	Installation Cable
UC900 SS23	S/FTP	Cat.7	Installation Cable
UC900 SS27	S/FTP	Cat.7	Patch Cable
UC1000 HS23	S/FTP	Cat.7a	Installation Cable
UC1000 SS23	S/FTP	Cat.7a	Installation Cable
UC1200 HS22	S/FTP	Cat.7+	Installation Cable
UC1200 SS22	S/FTP	Cat.7+	Installation Cable
UC1500 SS22 with 6 foils	S/FTP	MULTIMEDIA	Installation Cable
UC1500 SS23 with 6 foils	S/FTP	MULTIMEDIA	Installation Cable

Structured Solutions Performance EMC Fire Protection **Universal Cable** Multipair RoHS Quality and Environment

Electrical properties

Transmission perfor	mance					EMC properties				
Multipair Cable accord	ding to Cat.3 U/U	TP J	J-2YY	/H 25	5/50/	100x2x0,52 (AWG24)				
	MHz	1	4	10	16	Impedance Ω 100±5	Fire protection characteristi	ics****		
	Attenuation* dB	26.0	56.0	98.0	131.0	Loop resistance Ω/km ≤186	Overall diameter mm	12.9		
	NEXT dB	41.0	32.0	26.0	23.0	Capacitance nF/km nom. 45	Weight kg/km	162		
							Bending radius with load	8xD		
							with load	8xD 4xD		

Mechanical properties

Multipair Cable according to Cat.3 F/UTP J-2Y(St)Y/H 25/50/100x2x0,52 (AWG24)

MI	Hz 1	4	10	16	Impedance	Ω	100±5	Fire protection ch	aracterist	CS****
Attenuation*	dB 26.0	56.0	98.0	131.0	Loop resistance	e Ω/	′km ≤186	Overall diameter	mm	12.9
NEXT	dB 41.0	32.0	26.0	23.0	Capacitance	nF/km	nom. 45	Weight	kg/km	162
								Bending radius		
								W	ith load	8xD
								with	out load	4xD
								Tensile force	Ν	500

Multipair Cable according to Cat.5e U/UTP S-2YY/H 25/50/100x2x0,52 (AWG24)

N	/Hz	1	10	100	125	[Impedance	Ω	100±5	Fire protection ch	aracteris	tics****
Attenuation*	dB	1.9	6.0	19.8	22.3		Loop resistance	e Ω/	km ≤190	Overall diameter	mm	15.5
NEXT	dB	71.0	56.0	41.0	40.0		NVP***	%	ca. 67	Weight	kg/km	190
PS-NEXT	dB	68.0	53.0	38.0	37.0		Capacitance	nF/km	nom. 48	Fire load	MJ/km	2250
PS-ELFEXT	dB	65.0	45.0	25.0	23.0					Bending radius		
										W	ith load	8xD
										with	out load	4xD
										Tensile force	Ν	500

Multipair Cable according to Cat.5e F/UTP S-2Y(St)Y/H 25/50/100x2x0.52 (AWG24)

	1	٨Hz	1	10	100	125	Impedance	Ω	100±5	Fire protection cl	haracterist	tics*
	Attenuation*	dB	1.9	6.0	19.8	22.3	Loop resistanc	e Ω/	km ≤190	Overall diameter	r mm	15
	NEXT	dB	71.0	56.0	41.0	40.0	NVP***	%	ca. 67	Weight	kg/km	19
\	PS-NEXT	dB	68.0	53.0	38.0	37.0	Capacitance	nF/km	nom. 48	Fire load	MJ/km	225
	PS-ELFEXT	dB	65.0	45.0	25.0	23.0				Bending radius		
											with load	8
										with	nout load	4
										Tensile force	Ν	5

Draka Comteq gets the green light

On 1st July 2006, the final stage of "ElektroG" came into effect. The law which governs the marketing, return and environmentally-compatible disposal of electrical and electronic equipment serves the implementation in Germany of the two EC directives RoHS and WEEE.

Two directives, one law and a great deal of uncertainty in the industry. For our customers, on principle, the question is: are cables from Draka Comteq classified as electrical and electronic equipment in the sense of ElektroG or the RoHS and WEEE directives?

To cut a long story short: all cable solutions from Draka Comteq are not "equipment" in the sense of the directives and can thus be sold and used without hesitation. This conclusion is also reached by an independent expert who confirms the result with a certificate.

The Draka Comteq documentation provides further information on this theme, explains the background and shows the full wording of the certificate. The leaflet can be obtained free of charge from Stephan von Naguschewski. Simply send an e-mail to:

stephan.von.naguschewski@draka.com.

* Nominal value measured at 100 m (Velocity of Propagation)

** Nominal value Patch Cable measured at 10 m *** NVP = Nominal Velocity of Propagation **** LSOH

Structured Solutions
Performance
EMC
Fire Protection
Universal Cable
Multipair
RoHS
Quality and Environment

Quality and Environment

All our locations are certified according to DIN EN ISO 9001, additionally we practise environmental management according to DIN EN ISO 14001.

GHMT PREMIUM Verification Program

Customer

Draka Comteq Germany GmbH & Co. KG Piccoloministraße 2 D-51063 Köln, Germany

Description

Applied standards:

J-02YSCH 4x2x0,57 PiMF

ISO/IEC 11801: 2002-09 Information technology - Generic cabling for customer premises EN 50173-1: 2002

prEN 50288-4-1: 2002 Multi-element metallic cables used in analogue and digital communication and control; Part 4: Sectional specification for screened cables characterised up to 600 MHz; Section 1: Horizontal and building backbone cables6, shielded) -2003

TIA/EIA-568-B.2-1 (Addendum No.1 to TIA/EIA-568-B.2) - June 2002 Transmission Performance Specifications for 4-Pair 100 Ω Category 6 Cabling

Comments:

This certificate, based on participation in the GHMT PREMIUM Verification Program, authorizes to apply the GHMT PREMIUM marking. Ongoing compliance with the specifications is monitored within the framework of regular sampling, which cannot be influenced by the customer, thus defining high standards as regards continuous manufacturing quality.

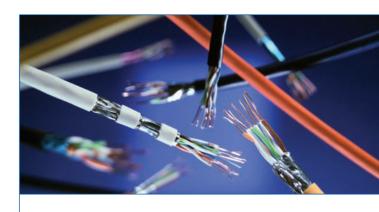
This Certificate refers to the comprehensive test report, no. P1618a-06-E, from September 27th 2006 and shall only be applicable in conjunction with the test report.

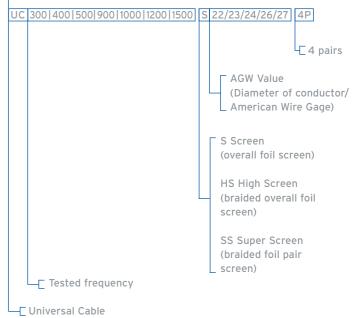
Bexbach, September 27th 2006

Dirk Wilhelm, engineer (Chairman of the Managing Board)

Structured Solutions Performance EMC Fire Protection Universal Cable Multipair RoHS Quality and Environment

DRAKA COMTEQ UC1500 SS23 MULTIMEDIA 6F S/FTP 4P


Part-No.: DCD11052 (FRNC-C); DCD11097 (FRNC)


Information technology - Generic cabling systems Part 1

Up to a bandwidth of 600 MHz, the sample meet the limits of the specified standards and regulations with respect to the parameters indicated above.

Product Description

100 Ω data transmission cables according to: ISO/IEC 11801 2nd ed. Cat.5e, Class D; Cat.6, Class E; Cat.7, Class F; Cat.7+, Class G EN 50173 Cat.5e, Class D; Cat.6, Class E; Cat.7, Class F; Cat.7+, Class G EIA/TIA 568 A; B.2-1

IEEE 802.3 an Cat.6a, Class E_A , Cat.7a, Class F_A

UC300	Universal Cable 100 MHz according to ISO/IEC 11801 2 nd ed. / EN 50173
UC400	Universal Cable 250 MHz according to ISO/IEC 11801 2 nd ed. /EN 50173
UC500	Universal Cable 500 MHz according to IEEE 802.3 an
UC900	Universal Cable 900 MHz according to ISO/IEC 11801 2 nd ed. /EN 50173
UC1000	Universal Cable 1000 MHz according to IEEE 802.3 an
UC1200	Universal Cable 1200 MHz according to ISO/IEC 11801 2 nd ed./EN 50173
UC1500	Universal Cable 1500 MHz according to ISO/IEC 11801 2 nd ed. /EN 50173